Update on Microbiology Research at the Waste Isolation Pilot Plant (WIPP)

Los Alamos National Laboratory—Carlsbad Operations Actinide Chemistry & Repository Science Program Team April 16, 2013

LA-UR-13-22647

Operated by the Los Alamos National Security, LLC for the DOE/NNSA Unclassified—DO NOT CITE OR DISTRIBUTE

BACKGROUND

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

CONCEPTUAL MODEL of MICROBIAL EFFECTS on NUCLEAR WASTE REPOSITORIES

- Microbial activity may affect actinide oxidation state
- Organic waste components, including high molecular weight organics (cellulose, plastic, and rubber), will be degraded
- The degradation of organics leads to production of
 - gas
 - organic ligands
- Microorganisms can adsorb actinides and serve as vectors for transport away from repository
- Microbial activity may affect backfill materials

ASSUMPTION VS. REALITY

ASSUMPTIONS VERSUS REALITY in SALT-BASED WASTE REPOSITORIES

ASSUMPTION	REALITY
Near-field homogeneity means microorganisms have access to all waste components	Near-field will be heterogeneous with microenvironments
Basic requirements for optimal growth (water, nutrients, substrates, electron donors and acceptors) are present and accessible	Basic requirements are not always met and rarely ideal for halophiles; heterogeneity and solubility limit accessibility
Cellulose will be completely degraded	Partial degradation may occur if cellulolytic organisms are present, active, and have access to cellulosics

ASSUMPTIONS VERSUS REALITY in SALT-BASED WASTE REPOSITORIES

ASSUMPTION	REALITY
Gas generation from consumption of organics	Generation rates are likely optimistic; CO ₂ accounted for by MgO at WIPP
Hydrocarbon degradation will lead to gas generation	Known haloarchaeal hydrocarbon degraders exist, but all are obligate aerobes; unlikely survival of halophilic bacterial degraders in repository brine, but more research needed
All organisms adsorb actinides; all organisms are mobile	Differential sorption behavior; presence of EDTA diminishes sorption; some cells motile, some sessile; cells may lyse between near- and far-fields
Is far-field taken into consideration?	Far-field microbial activity far greater than near-field

MICROBIAL ECOLOGY of the WIPP

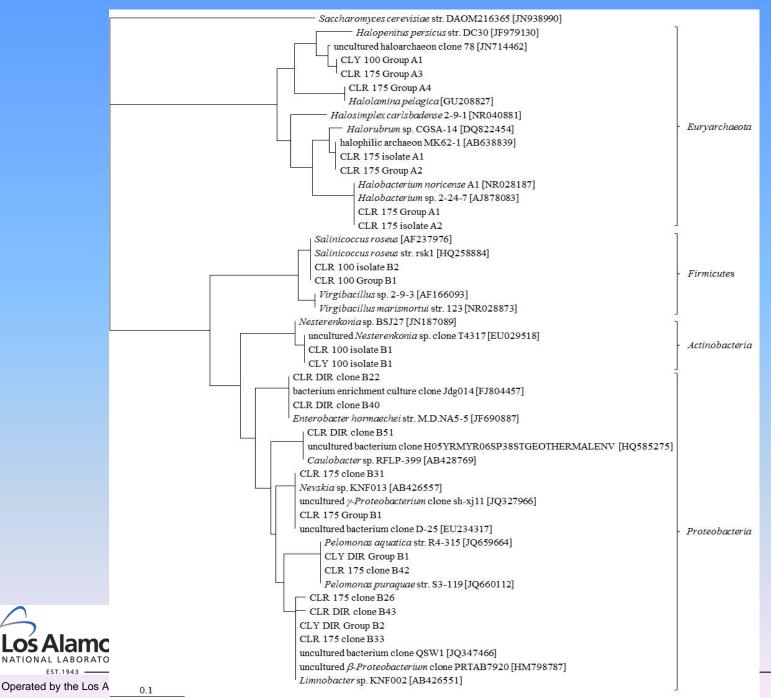
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

SURVIVAL of MICROORGANISMS at HIGH IONIC STRENGTH

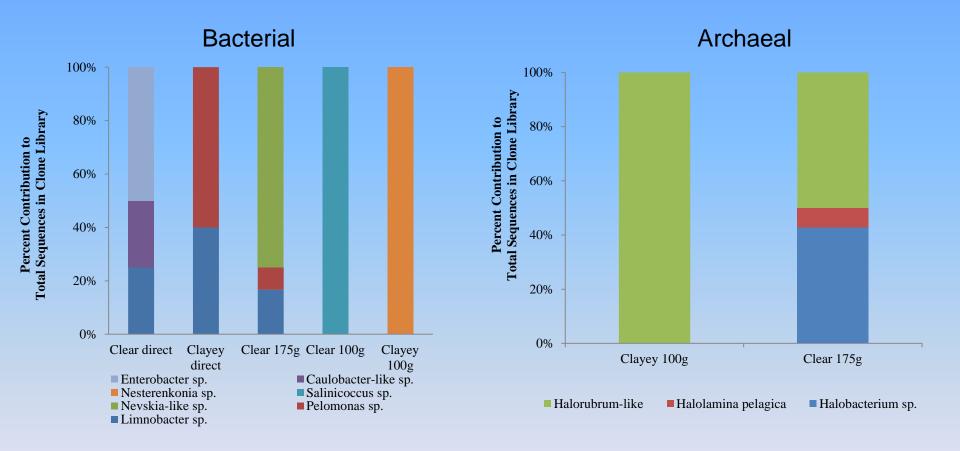
- Must be able to maintain osmotic balance with external environment
 - Haloarchaea and some Bacteria (order Halanaerobiales) maintain high concentrations of K⁺ or Cl⁻ internally
 - All other Bacteria and all eukaryotes use mostly organic solutes
- Maintaining osmotic balance is energetically costly
- All metabolic processes are limited by thermodynamics; weigh cost of maintaining osmotic balance with benefit of energy obtained through given metabolic reaction

METABOLIC PROCESSES of HALOPHILIC MICROORGANISMS

MODE OF METABOLISM	HALOPHILIC BACTERIA	HALOARCHAEA	CONSTRAINTS OTHER THAN [SALT]
Aerobic	+	+	Oxygen availability
Nitrate Reduction	+	+	Inventory
Metal Reduction	+	-	Solubility
Sulfate Reduction	+	-	Few limits
Methanogenesis	-	-	Adequate substrate
Fermentation	+	+	Primary lytic species; substrate


WIPP HALITE—"Near-field Environment"

- Extremely halophilic Archaea (all members of class Halobacteria):
 - Halobacterium (sorption experiments)
 - Halorubrum-like (unclassified)
 - Halolamina
 - Natronomonas
- Halotolerant to moderately halophilic Bacteria:
 - Proteobacteria
 - Actinobacteria
 - Firmicutes (Vreeland et al., 2000)
- Halotolerant to moderately halophilic *Fungi* (all members of phylum *Ascomycota*):
 - Cladosporium
 - Engyodontium

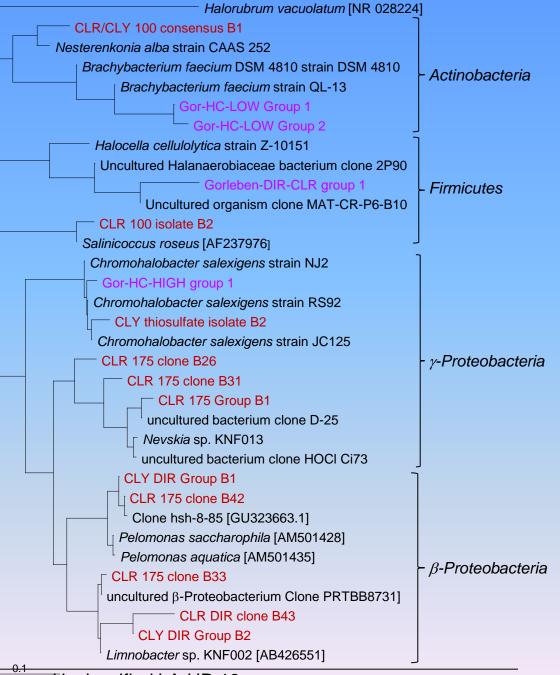

ALL FROM AEROBIC INCUBATIONS NO GROWTH IN ANAEROBIC INCUBATIONS

HALITE PROKARYOTIC DIVERSITY

HALITE EUKARYOTIC DIVERSITY

- Three fungal isolates:
 - Cladosporium
 - Engyodontium
 - Phoma

Operated by the Los Alamos National Security, LLC for the DOE/NNSA



COMPARISON of SALADO and GORLEBEN HALITES— BACTERIA

Shared organism: *Chromohalobacter* Not found in Salado: *Brachybacterium, Halocella-*like

Archaeal result negative for Eu direct extract, a in culture • Los Alamos

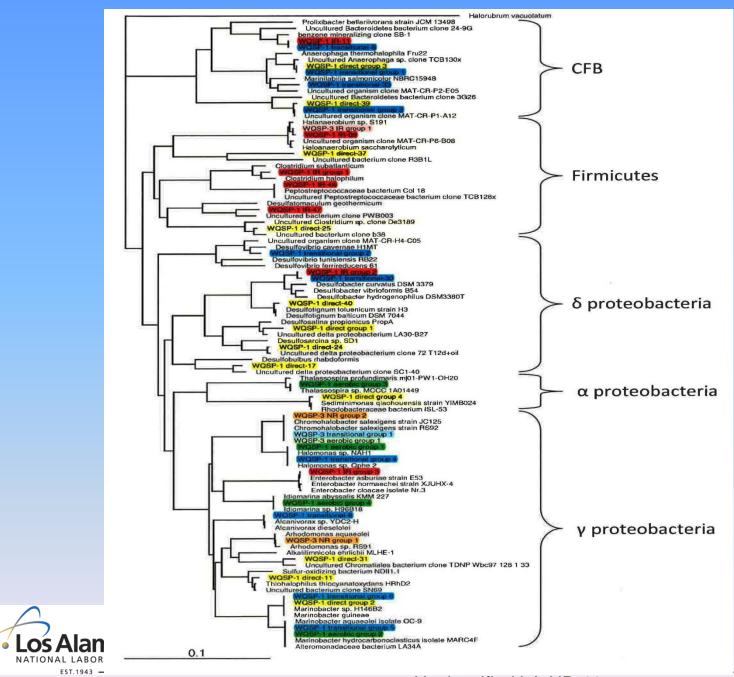
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

WIPP GROUNDWATERS

- Far-field environment
- Range of ionic strengths (~1.5-5 M)
- Low in DOC, nitrate; high in sulfate (25-74 mM), Mg²⁺, K⁺, Ca²⁺
- *Bacteria* with diverse metabolic capability:
 - Nitrate reducers
 - Metal reducers
 - Sulfate reducers
 - Fermenters (including extremely halophilic *Bacteria*)
- When metals are present, incubations result in precipitation of metal-sulfide; both metal-reducers and sulfate-reducers can be detected

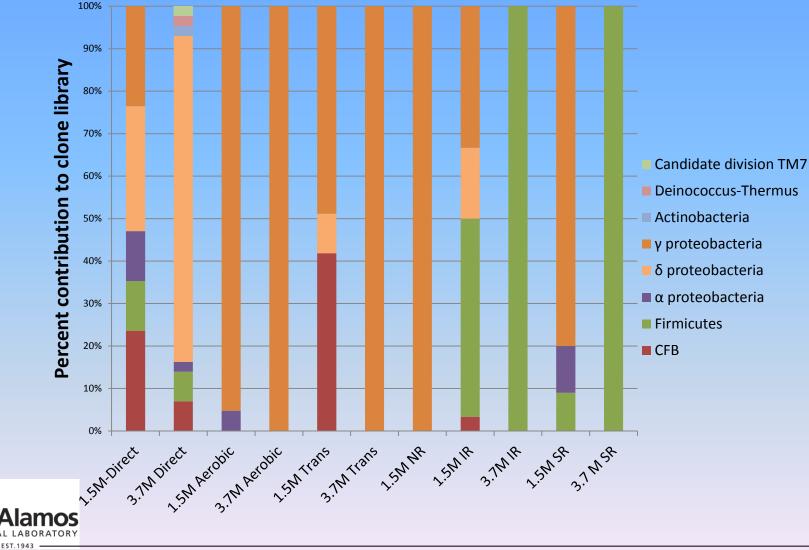
WIPP GROUNDWATERS—AEROBIC

- Moderate to extremely halophilic *Archaea* (all order *Halobacteriales*):
 - Halococcus
 - Natrinema
- Halotolerant to extremely halophilic *Bacteria*:
 - Proteobacteria (Chromohalobacter spp.)
 - Firmicutes (Virgibacillus, Pontibacillus, Bacillus)
- Halotolerant *Fungi* (only in 5 M groundwater; not yet characterized)



WIPP GROUNDWATERS—ANAEROBIC

- Moderate to extremely halophilic Archaea (all Halobacteriales), viable but not growing anaerobically:
 - Natrinema
 - Haloferax
 - Haloarcula
- Halotolerant to moderately halophilic *Bacteria*:
 - Proteobacteria (including denitrifiers, iron- and sulfate-reducers)
 - Bacteroidetes
 - Firmicutes (including iron-reducers and fermenters)

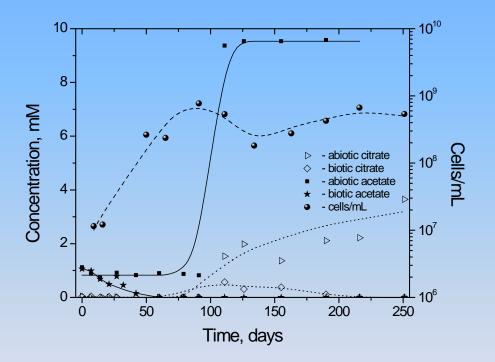


Operated by the Los Alamos National Security, LLC for the DOE/NNSA

GROUNDWATER COMPARISON-BACTERIA

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

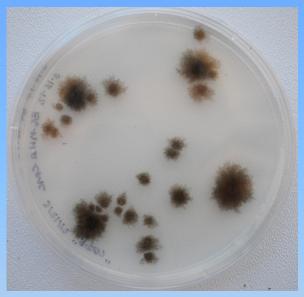
BIODEGRADATION of ORGANIC WIPP WASTE



Operated by the Los Alamos National Security, LLC for the DOE/NNSA

DEGRADATION of LOW MOLECULAR WEIGHT ORGANICS—COMPLEXING AGENTS

- Aerobic degradation of acetate, oxalate, and citrate
- Degradation of citrate under denitrifying conditions not shown (shown by Francis et al., 2000, using organism enriched from area brine lake); co-oxidation of citrate with acetate being tested


DEGRADATION of HIGH MOLECULAR WEIGHT ORGANICS—CELLULOSICS

- Degradation of cellulose and exhibition of cellulase activity under aerobic conditions
 - two isolates (fungal and bacterial) currently growing on solid agar with either carboxymethylcellulose or Kimwipes as sole carbon source
 - cellulase-positive bacterial isolates (Salinicoccus, Nesterenkonia)
- Potential for anaerobic fermentation in far-field
 - glucose fermenter isolated (*Halanaerobium* sp.)
 - sequences related to Halocella detected

AEROBIC CELLULOSE UTILIZATION

carboxymethylcellulose

No Kimwipe

Kimwipe

Cladosporium sp. pH range: 5-10, optimum 6 NaCl range: 0-20%, optimum 10%

Nutrient-rich medium

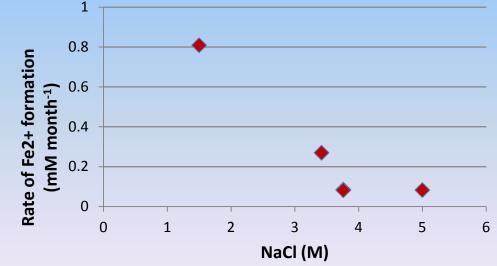
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

METAL REDUCTION and PRECIPITATION in HIGH IONIC STRENGTH SYSTEMS

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Unclassified LA-UR 13

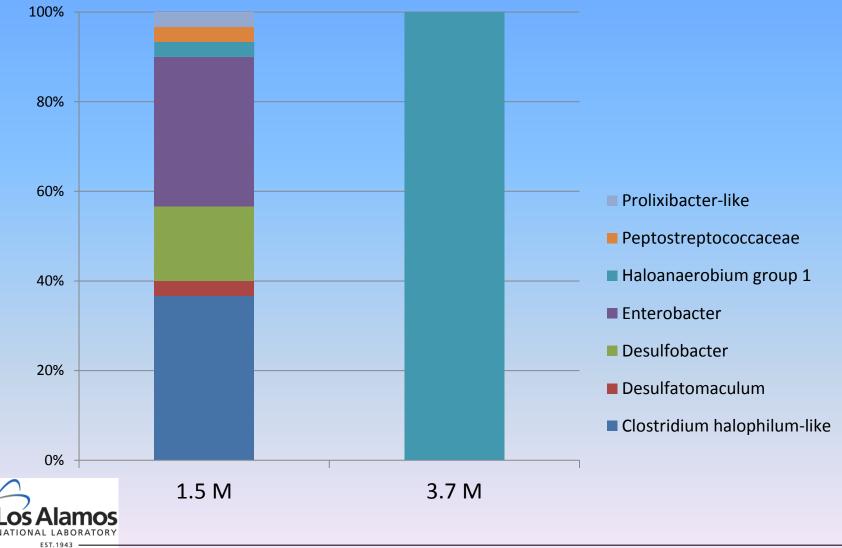
IMPLICATIONS for SALT-BASED WASTE REPOSITORIES


- Ability to reduce iron may translate to ability to reduce actinides
- Reduced iron precipitates with sulfide
- Reduced sulfate precipitates both oxidized and reduced iron species
- Metal-sulfide precipitate removes toxic sulfide
- Microorganisms induce metal precipitation as carbonate species, regardless of oxidation state

METAL REDUCTION in GROUNDWATER INCUBATIONS

- Fe(IIII) solubility in saline systems is low; usually associated with POM and sediment in marine systems
- Iron reduction observed in *abiotic* incubations as function of ionic strength; slower rate than *microbiallyinduced* reduction
- Rates of reduction decreases with increasing [NaCI]

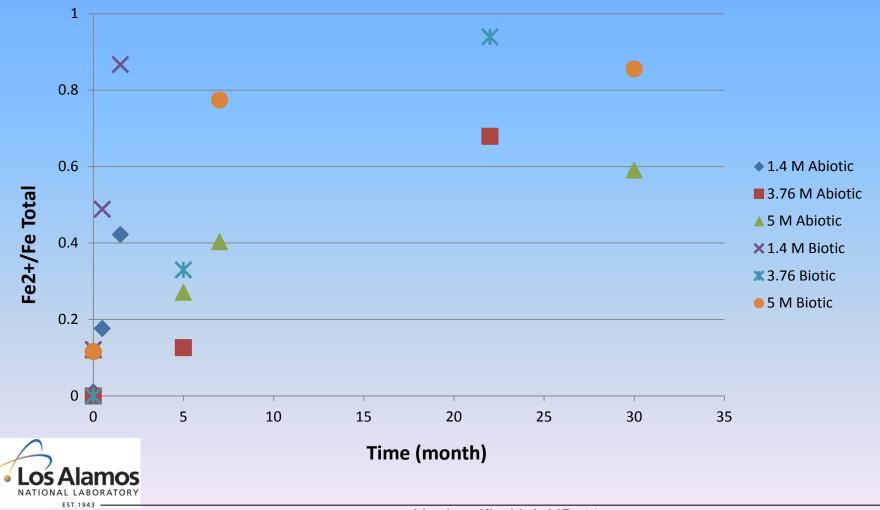
Operated by the Los Alamos National Security, LLC for the DOE/NNSA


ORGANISMS FOUND in IRON-REDUCING INCUBATIONS

- 1.5 M: consortium of fermenters, iron-reducers, and sulfate-reducers (*Bacteroidetes*, *Halanaerobium*, *Clostridium*, *Peptostreptococcus*, *Desulfobacter*)
- 3.7 M: mixed culture of halophilic *Bacilli* (*Virgibacillus*, *Pontibacillus*); likely obligate aerobes
- 5 M: mixed culture of *Archaea* (*Haloferax*, *Haloarcula*) and *Bacteria* (see 3.7 M)

MICROBIAL DIVERSITY ASSOCIATED WITH IRON REDUCTION

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

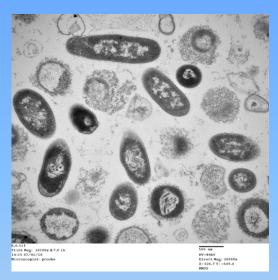

POSSIBLE MODES of IRON REDUCTION at HIGH IONIC STRENGTH

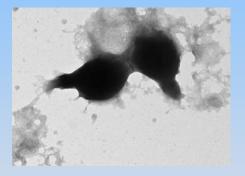
- Direct reduction: appears limited to lower ionic strengths, both iron and sulfate reducers (1.5 M culture)
- Indirect reduction via:
 - Fermentation
 - Sulfate reduction
 - Release of reducing agents during sporulation or halocyst formation?
- Microbially-induced precipitation as iron carbonate, metal

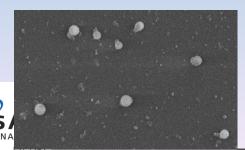
IRON REDUCTION in BIOTIC and ABIOTIC INCUBATIONS at DIFFERENT IONIC STRENGTH

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

BIOSORPTION

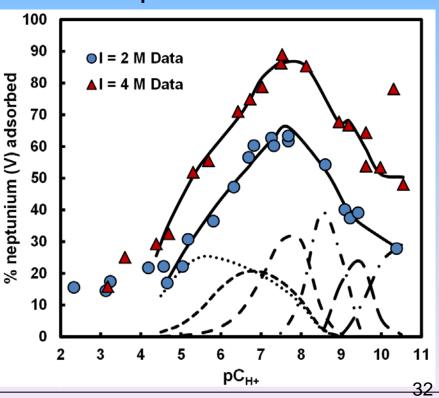



Operated by the Los Alamos National Security, LLC for the DOE/NNSA



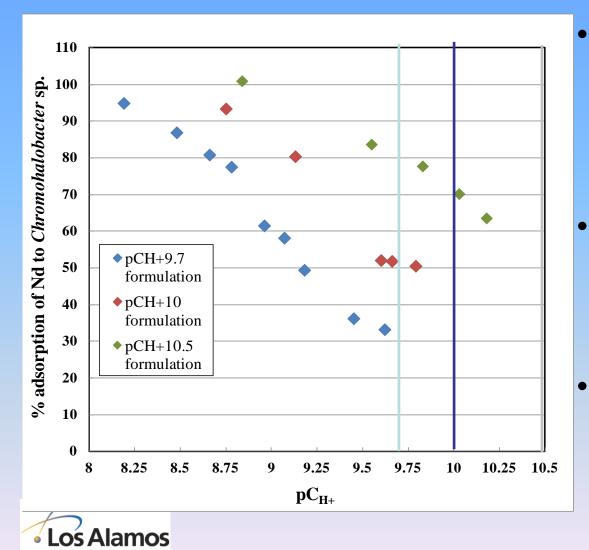
BIOSORPTION- TEST ORGANISMS

Chromohalobacter sp.—isolated from area groundwater, borehole seep, WIPP and Gorleben halites; strain used tolerates pH 5-9, 0.9-4.3 M NaCl; 0.3-0.5 x 1.5-2 µm size


Halobacterium noricense—isolated from incubations of halite in generic media and in WIPP brines; detected in other subterranean salts worldwide (including Germany); requires 2.5-5 M NaCI, tolerates pH 6-10; 0.3-1.5 x 0.3-1.5 µm size

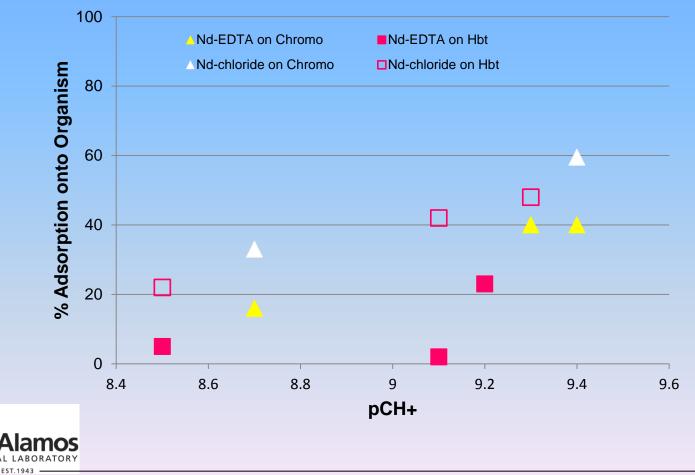
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

BIOSORPTION—Np onto Chromohalobacter


- Titration data at 2 and 4 M similar to each other
- Titration data similar to other organisms at low ionic strength
- Best-fit model invokes 4 surface complexation sites
 - Differences observed insorption at 2 and 4M over pC_{H+} range
 - Model invoking carbonate complexation reactions fits best at higher pC_{H+}

BIOSORPTION—Nd onto Chromohalobacter

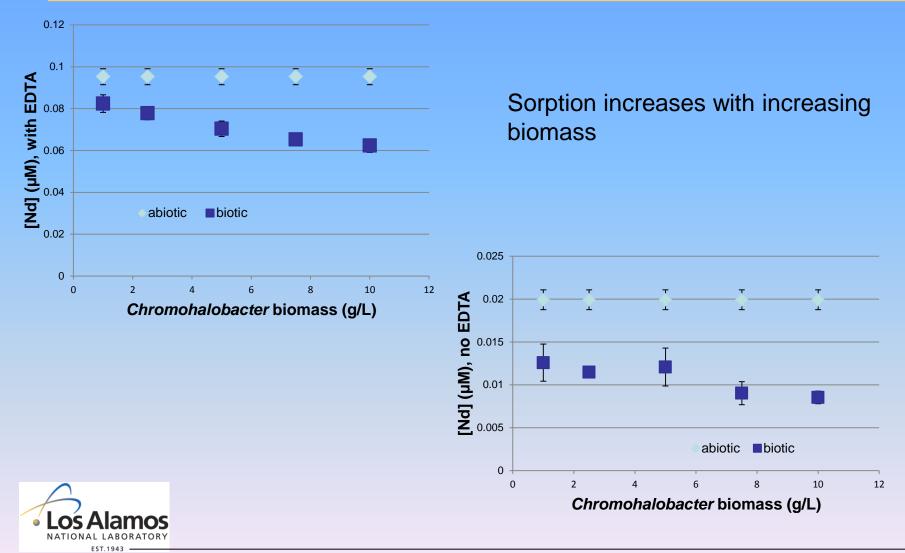
- Nd sorption to *Chromohalobacter* in 3
 reacted ERDA
 formulations; <u>carbonate</u>
 in system
- Significant differences in sorption behavior as function of pC_{H+} and formulation (Mg effect)
- Note: this is at limit of *Chromohalobacter* pH tolerance



Operated by the Los Alamos National Security, LLC for the DOE/NNSA

DRAFT-- DO NOT CITE OR DISTRIBUTE

ASSOCIATION of Nd with CELLS as a FUNCTION of pC_{H+}


Complexation with EDTA decreases sorption

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

ASSOCIATION of Nd with CELLS as a FUNCTION of BIOMASS

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

SUMMARY of BIOSORPTION DATA at EXPECTED WIPP pC_{H+}

• Nd(III)

- Archaea: 25-50% sorption
- Bacteria: 40-65% sorption
- EDTA reduced sorption in both cases by ~ 40%
- Th(IV)
 - Archaea: 40-65% sorption
 - Bacteria: 81% (no EDTA) and 57% (EDTA) sorption
 - At pC_{H+} > 9, cannot differentiate between sorption and precipitation, due to colloids and slow hydrolysis

CONCLUSIONS

- Structural and functional diversity of WIPP microbial communities differs between near- and far-field environments
- Aerobic degradation of organic complexing agents and cellulose by WIPP-indigenous organisms occurs; Anaerobic degradation of organic complexing agents has not been shown with halite-derived organisms; bacterium similar to only known halophilic, anaerobic, cellulolytic microorganism detected in WIPP groundwater and associated with Gorleben halite
- Both abiotic and microbially-mediated metal reduction occur in hypersaline systems; rates dependent upon [Na]
- Actinide sorption to microorganisms shows ionic strength, pC_{H+} , organism, and actinide dependence

ACKNOWLEDGMENTS

This work is sponsored by the US Department of Energy—Carlsbad Field Office

We especially thank:

- Russ Patterson, DOE program manager and support
- WIPP and Washington TRU Solutions for sampling assistance

